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Abstract—In this paper, the discrete-time distributed dynamic
state estimation and Linear Quadratic Gaussian (LQG) control
problems are analyzed for resource-constrained networked sys-
tems. Following a holistic approach we provide a complete system
design for the signal processing, communication, and control
tasks involved in the problems; and evaluate their performance.
In the presence of a controller node and a number of sensor
nodes, the sensor nodes, in a resource-efficient way, report
their information entities to the controller node using an event-
triggered sampling technique called level-crossing sampling. We
demonstrate the performance gains due to level-crossing sampling
over conventional time-triggered uniform sampling, as well as the
advantages of processing data locally before transmitting to the
controller. In particular, it is shown that the proposed decentral-
ized schemes with local processing and level-crossing sampling
ensure a very close approximation, with a bounded error, to the
optimum (centralized) estimation and control schemes, and as a
result yield order-2 asymptotic optimality. Moreover, non-ideal
communication between sensors and the controller is considered,
and optimal modulation techniques are provided for different
channel models. Simulation results are provided to support the
presented discussions.

Index Terms– Networked control systems, level-crossing sam-
pling, distributed Kalman filter, LQG control, asymptotic opti-
mality, unreliable communications.

I. INTRODUCTION

With the interplay between signal processing, communi-
cations, and control, and the recent advancements in these
fields, it is now possible to control dynamic systems re-
motely via networked control systems (NCS) [1], [2]. In
NCS, sensors and controllers are geographically separated and
there is a communication system between them to exchange
information. They are widely used due to ease of installation,
ease of maintenance, system flexibility, low complexity, and
low costs [1], [2]. However, traditional signal processing and
control techniques do not directly apply to NCS due to strict
communication constraints.

In resource-constrained systems, the communication rate
should be reduced as much as possible while maintaining
a satisfactory system performance such that resources are
used in a smart way. Although conventional time-triggered
systems have the advantage of ease of design and analysis
based on well-established theories, they typically suffer from
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inefficient use of resources, such as energy and communication
bandwidth. As a result, there is an increasing interest in the
event-triggered signal processing and control techniques over
the past years [3]. For instance, in a networked control system,
when the system is at its steady state, periodic sampling
and transmission between sensors and the controller wastes
bandwidth, energy, and computation resources. On the other
hand, in event-triggered systems, actions depend on a set of
predefined events, and information transmission takes place
only when such events occur, see e.g., [4], [5]. With properly
defined events, event-triggered signal processing and control
is preferred for networked systems [6], [7].

A main task of a networked system is estimating the system
state based on collected measurements over the network. For
a linear dynamic system, if the noise terms are Gaussian,
the centralized Kalman filter is the optimal state estimator
in minimizing the mean squared error [8]. However, if the
system is located in a geographically large area, then collecting
and processing measurements at a single node is infeasible
due to communication constraints. Hence, distributed Kalman
filtering has received significant attention in the literature, see
e.g., [9] for a review. For a network in which only neighboring
nodes are allowed to communicate with each other, the Kalman
Consensus Filter (KCF) is proposed in [10] that combines
local Kalman filters and a dynamic consensus algorithm for
reducing disagreements on state estimates of the local Kalman
filters. With the aim of reducing the communication rate in the
KCF, event-triggered communication schemes are proposed in
[11] and [12]. Furthermore, in [13], an event-based distributed
Kalman filter is proposed, where each node decides on sharing
its local measurements with the other nodes depending on the
level of deviation of the local measurements from the predicted
ones. It is also proposed in [14], [15] that at each time a sensor
sends a quantized measurement innovation signal, which is the
difference between the actual measurement and the predicted
measurement by the Kalman filter, to all other sensors, which
then update their state estimates based on the broadcasted
message.

The presence of a communication system in networked sys-
tems brings some challenges such as limited data rate, quan-
tization, and unreliable channels with data losses and com-
munication delays, whose effects on the system performance
are extensively studied, see e.g., [16]–[23]. For instance, [16]
examines the linear quadratic Gaussian control problem in
NCS in the presence of medium access constraints and delays.
Delay compensator is used together with a medium access
policy. In [17], communication channels have limited data
rates. A quantization, coding and control scheme is designed
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to have the smallest possible data rate to achieve stability and
desired control performance. Moreover, the tradeoff between
linear quadratic cost and the data rate is shown. Authors of
[18] considered distributed event-triggered control for NCS in
the presence of both data losses and communication delays.
Maximum allowable number of successive data dropouts and
transmission delay deadlines are predicted locally. In [19],
joint effect of delay and quantization on the stability of NCS is
examined. The relationship between choosing the quantization
parameters and communication delays is shown.

In [20], discrete-time LQG control problem is examined
over lossy networks for both observation and control packets.
It is argued that if packets are acknowledged at the receivers in
a TCP-like network, then separation principle in LQG control
holds and the optimal control input is a linear function of
the estimated state provided that the arrival rates of packets
are above some critical levels. However, if the packets are
not acknowledged in a UDP-like network, then the separation
principle does not hold and optimal control law is nonlinear
in general. In [21], in a TCP-like network, acknowledgment
messages are also subject to random data dropouts. In this
case, the optimal control law is again nonlinear. It is also
shown that with quantization, the separation principle does
not hold. In [22], an unreliable channel that randomly erases
transmitted data is considered and a threshold-based rule is
used as the event-triggering mechanism. Control performance
is measured by a linear-quadratic cost for a given event
threshold level and the tradeoff between control performance
and communication cost is illustrated. Cyber-security is also
a concern in NCS. For instance, in [23], random packet
losses due to interrupting jamming attacks are considered and
conditions for stability of the system are provided.

The event-triggered paradigm is mainly used for nonuniform
sampling in the signal processing applications [24]. In con-
ventional uniform sampling, sampling times are periodic and
predetermined, in general, according to the highest expected
spectral frequency in the signal. Such high-frequency sampling
is a waste of energy when the lower-frequency components are
dominant in the signal. On the other hand, in event-triggered
sampling, sampling times are dynamically determined based
on the signal. Specifically, a sample is taken when a predefined
event occurs in the signal (e.g., signal amplitude crosses a
predetermined level). Consequently, event-triggered sampling
encodes the signal in the sampling times, whereas in uniform
sampling the signal is encoded in the sample amplitude. In
real-time applications, the time-encoding feature of event-
triggered sampling results in a significant advantage as the
sampling times can be tracked using simple one-bit signaling
[25].

In level-crossing sampling, sampling is triggered when the
signal amplitude crosses one of the predetermined levels,
which are usually uniformly spaced. When the successive
crossing of the same level is ignored, the sampling mech-
anism is called level-crossing sampling with hysteresis [3].
In this paper, we use level-crossing sampling with hysteresis
to transmit the local information entities at the sensor nodes
to the controller. For simplicity, we drop the term hysteresis
throughout the paper.

In this paper, we consider the discrete-time dynamic
state estimation and LQG control problems in a resource-
constrained networked system. Following a holistic approach
we provide a complete decentralized system design for the
signal processing, communication, and control tasks in a
network of multiple sensor nodes and a controller. The sensor
nodes take several noisy observations of the time-varying
system states, and after processing observations they transmit
their local information to the controller in a resource-efficient
way using level-crossing sampling. We show that the proposed
decentralized schemes closely approximate the optimum cen-
tralized schemes, achieving strong (i.e., order-2) asymptotic
optimality under reliable communication channels. We then
consider noisy communication channels between sensors and
the controller. For different channel models, we derive the
optimal modulation techniques. Through simulations, we il-
lustrate the advantages of transmitting a finalized information
compared to transmitting raw measurements to the controller,
and also the advantages of using level-crossing sampling over
conventional time-triggered sampling.

The remainder of the paper is organized as follows. The sys-
tem model and dynamic state estimation are explained in Sec-
tion II. Distributed state estimation for resource-constrained
networked systems is examined in Section III. Non-ideal com-
munications is considered and corresponding optimal modu-
lation schemes are presented in Section IV. Distributed LQG
control problem for resource-constrained networked systems
is studied in Section V, which is followed by the numerical
results in Section VI. Finally, Section VII concludes the paper.
In this paper, we represent vectors and matrices with boldface
small and capital letters, respectively, and all vectors are
column vectors.

II. SYSTEM DESCRIPTION

A. System Model
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Fig. 1. The considered networked control system.

Consider a networked control system with K nodes and a
controller, as shown in Fig. 1. At each time t ∈ N each node
k takes mk noisy measurements of n dynamic states, resulting
in a total of m =

∑K
k=1mk measurements systemwide. The

controller, gathering some kind of local information from
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nodes, applies a control input to the system. Specifically, we
assume the following linear state space model

xt+1 = Axt +But + vt

zkt = Ckxt +wk
t ,

(1)

where xt ∈ Rn is the state vector; A is the state matrix; ut ∈
Rp is the input, i.e., control vector; B is the input matrix; vt is
the additive white Gaussian system noise with the covariance
matrix R1; and zkt ∈ Rmk , Ck, wk

t are the observation vector,
observation matrix, and the additive white Gaussian noise with
the covariance matrix R2,k, respectively, at node k. We further
assume that the noise vectors vt and wk

t are independent,
hence we have E

[
vtv

T
t′

]
= δ(t − t′)R1, E

[
wk
t (wk

t′)
T
]

=
δ(t− t′)R2,k, and E

[
wk
t v

T
t′

]
= 0, ∀k, t, t′, where E[·] is the

expectation operator, and δ(t) is the Dirac delta function at
t = 0.

We assume A, B and {Ck} are given and satisfy the
observability and controllability conditions for our discrete-
time linear time-invariant system. In Section III, the input ut
is assumed to be given, and in Section V, it is designed for
LQG control. Instead of transmitting the raw observations zkt
from nodes to the controller, leveraging the information form
of Kalman filter we propose to transmit local contributions
to the optimum estimator x̂t (Section III) and the optimum
control input ut (Section V). Since xt and ut typically have
much smaller dynamic ranges and number of dimensions than
zkt (see Fig. 8), the proposed method turns out to be quite
advantageous over the traditional methods (see Table I). We
also show through simulations that the control input produced
by the proposed method is closer to the optimum value than
that produced by transmitting zkt (see Fig. 7).

B. Information Filter

We have a discrete-time linear dynamic system as described
in (1). Since the noise terms are Gaussian, Kalman filter is the
optimal state estimator [8]. The information filter, or inverse
covariance filter, is algebraically equivalent to the Kalman
filter. Instead of the estimates of the state covariance matrix
and the state vector, it uses the following information matrix
and information vector, respectively,

Y t|t′ , P
−1
t|t′ (2)

yt|t′ , P
−1
t|t′ x̂t|t′ = Y t|t′ x̂t|t′ , (3)

where P t|t′ and x̂t|t′ are the predicted (for t′ = t − 1) and
updated (for t′ = t) covariance matrix and state estimate in the
Kalman filter, respectively. The information matrix and vector
are predicted as

Y t|t−1 = (I − F t−1)Gt−1, (4)

yt|t−1 = (I − F t−1)A−Tyt−1|t−1 + ξt−1, (5)

and updated as

Y t|t = Y t|t−1 +
K∑
k=1

CT
kR
−1
2,kCk, (6)

yt|t = yt|t−1 +
K∑
k=1

CT
kR
−1
2,kz

k
t , (7)

where Gt , A
−TY t|tA

−1, (8)

F t , Gt

(
Gt +R−11

)−1
, (9)

ξt−1 , Y t|t−1But−1, (10)

and I is the identity matrix [26]. Denote the information
contributions from node k with

Φk , CT
kR
−1
2,kCk, (11)

and φkt , CT
kR
−1
2,kz

k
t . (12)

Then, from (6) and (7) we can write Y t|t = Y t|t−1 + Φ and
yt|t = yt|t−1+φt, where Φ ,

∑K
k=1 Φk and φt ,

∑K
k=1 φ

k
t

are the systemwide information contributions.
In this study, for state estimation, we prefer to use the

information filter over the Kalman filter for several reasons.
Firstly, the information filter is more convenient for a dis-
tributed setting due to its simple update rules, given in (6) and
(7). In particular, in the classical distributed implementation of
the information filter, each node k reports its new information
contribution φkt at each time t to the controller, which sums
them to update the information vector yt|t−1. On the other
hand, in the Kalman filter each node k needs to report its
raw observation zkt at each time t, which is processed at
the controller before the update, hence causes propagation of
quantization/communication errors. Secondly, at each time t,
the inverse of an n × n matrix is computed to obtain F t in
the information filter, whereas in the Kalman filter an m×m
matrix is inverted, where usually m � n. However, we note
that the structure of the information filter requires the matrices
A, R1, and {R2,k} to be invertible.

III. DISTRIBUTED STATE ESTIMATION FOR
RESOURCE-CONSTRAINED SYSTEMS

In resource-constrained systems with strict energy and band-
width limitations, e.g., wireless sensor networks, nodes cannot
exactly report their information contributions. Specifically,
each node k needs to sample and quantize its information
entity before transmitting it to the controller. Since such a
sampling and quantization process induces information loss,
which grows with further processing at the controller, we
intend to perform the necessary information processing as
locally as possible before transmitting the information. To this
end, defining the shorthand subscript t , t|t we present the
following lemma.

Lemma 1. The systemwide optimum state estimate x̂t can be
written as the sum of local contributions and a term related
to the previous-time control inputs, i.e.,

x̂t = ϕt +
K∑
k=1

x̂kt , (13)
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where ϕt is the input related term, defined in (23) and (18),
and x̂kt is the local contribution from node k to x̂t.

Proof: From (5) and (7), we write

yt = ξt−1 + Ωt−1yt−1 +
K∑
k=1

φkt , (14)

where Ωt−1 , (I − F t−1)A−T . (15)

Note that due to (10), ξt−1 is related to ut−1. We split yt into
two parts as

yt = λt−1 + ζt (16)

where λt−1 is equal to the sum of all terms related to the
previous-time control inputs and ζt is the contribution from
information entities. We split yt−1 as in (16), and rewrite (14)
as follows:

yt = ξt−1 + Ωt−1(λt−2 + ζt−1) +
K∑
k=1

φkt

= ξt−1 + Ωt−1λt−2︸ ︷︷ ︸
λt−1

+ Ωt−1ζt−1 +

K∑
k=1

φkt︸ ︷︷ ︸
ζt

. (17)

Based on (17), we write the evolutions of the terms λt and ζt
in time as follows:

λt = Ωtλt−1 + ξt, (18)

ζt = Ωt−1ζt−1 +
K∑
k=1

φkt , (19)

where λ−1 = 0 and ζ0 = 0 are the initial values of
these terms, respectively. Furthermore, from (19) we have
ζ1 =

∑K
k=1 φ

k
1 , ζ2 = Ω1

∑K
k=1 φ

k
1 +

∑K
k=1 φ

k
2 , and so on.

Defining Ψt
s , ΩtΩt−1 · · ·Ωs we write ζt as

ζt =
t∑

s=1

Ψt−1
s

K∑
k=1

φks ,

=
K∑
k=1

t∑
s=1

Ψt−1
s φks ,

=
K∑
k=1

ykt , (20)

where Ψt−1
t = I and ykt ,

∑t
s=1 Ψt−1

s φks . Note that φks =
CT
kR
−1
2,kz

k
s is the local information of node k at time s, and

Ψt−1
s = Ωt−1Ωt−2 · · ·Ωs is a function of A and {F r}t−1r=s,

where F r, given by (9), is a function of A, R1, and Y r.
From (6), Y r is computed using {Ck} and R2,k. Since A,
R1, R2,k, and {Ck} are known and time-independent, each
node k can compute its local information entity ykt at each
time t. Moreover, similar to (19), it can recursively update ykt
as

ykt = Ωt−1y
k
t−1 + φkt . (21)

The terms related to the previous inputs, i.e., {λt} can
be computed and updated by the controller node using (18).
Hence, there is no need to transmit these information entities

from the nodes. Then, each node k can locally process φkt ,
given by (12), and transmit ykt instead of transmitting φkt as
in the standard distributed implementation of the information
filter. In fact, to minimize the information loss at the controller,
we can further process ykt locally and transmit a finalized
information entity. Specifically, from (3), (16), and (20), the
global state estimate at time t is given by

x̂t = Y −1t

(
λt−1 +

K∑
k=1

ykt

)

= ϕt +
K∑
k=1

x̂kt , (22)

where ϕt , Y
−1
t λt−1, (23)

and x̂kt , Y −1t y
k
t . Note that the matrix Y t is available to all

nodes and from (4) and (6), it can be recursively computed as

Y t = Ωt−1Y t−1A
−1 +

K∑
k=1

Φk. (24)

A. Information Transmission using Level-Crossing Sampling

As a result of Lemma 2, we propose that the nodes transmit
{x̂kt }Kk=1 to the controller, which sums them and the term
related to the previous-time inputs to obtain the optimal state
estimate x̂t. An event-triggered sampling technique, called the
level-crossing sampling, can be used to accurately report x̂kt
in an energy- and bandwidth-efficient way. The level-crossing
sampling procedure is quite simple: Firstly, a set of signal
levels is selected to trigger sampling. Here we use a set with
uniform spacing ∆, as shown in Fig. 2. As the signal is
observed sequentially, a new sample is taken when the signal
crosses a sampling level that is different than the most recently
crossed one.

This method is, in fact, known as level-crossing sampling
with hysteresis in the literature. In the original level-crossing
sampling procedure, a sample is taken every time a sampling
level is crossed, even when the same level is crossed consecu-
tively, which makes the procedure even simpler. However, this
method does not serve our purpose of reporting the changes in
the local information entity (see Fig. 2). For simplicity, here
we drop the term hysteresis.

In this adaptive sampling scheme, the sampling times are
dynamically determined by the signal, hence random, as
opposed to the traditional time-triggered uniform sampling, in
which samples are periodically taken in time. In the traditional
sampling, the time axis is partitioned uniformly, whereas in
the level-crossing sampling, we partition the magnitude axis
uniformly, time being the dependent variable.

In particular, node k samples the ith entry x̂k,it of x̂kt at the
random sampling times {τk,iq }q given by

τk,iq , min
{
t ∈ N : |x̂k,it − γ

k,i
q−1∆| ≥ ∆

}
, (25)

where γk,iq−1 ∈ N is the sampling level in terms of ∆ that was
most recently crossed. In other words, each node k runs n
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Fig. 2. The level-crossing sampling procedure. A new sample is taken when
a sampling level that is different than the one at the last sampling time is
crossed. At each sampling time τk,iq , a discrete-time signal over/under shoots
the sampling level by εk,iq .

parallel level-crossing samplers for {x̂k,it }ni=1. Note that the
threshold ∆ in (25) determines the sampling rate. The smaller
it is, the more frequently samples are taken in a nonuniform
fashion. A small ∆ may also cause x̂k,it to cross multiple
sampling levels at once, i.e., at time τk,iq the number of crossed
sampling levels is given by

θk,iq ,

⌊
|x̂k,iq − γ

k,i
q−1∆|

∆

⌋
≥ 1. (26)

Then, at each sampling time τk,iq node k transmits θk,iq
repetitions of the sign bit

δk,iq , sign(x̂k,iq − γ
k,i
q−1∆) = sign(γk,iq − γ

k,i
q−1), (27)

indicating the current sampling level

γk,iq = γk,iq−1 + δk,iq θk,iq . (28)

Here we use the shorthand notation x̂k,iq for the signal level,
and γk,iq for the sampling level (in terms of ∆) at time τk,iq .

The controller, upon receiving δk,iq (and possible repetitions)
at time τk,iq , updates its estimate for x̂k,it by δk,iq θk,iq ∆, i.e.,

˜̂xk,iq = ˜̂xk,iq−1 + δk,iq θk,iq ∆, ˜̂xk,i0 = 0, (29)

where ˜̂xk,iq−1 is the estimate of x̂k,it at the controller node during
the time interval τk,iq−1 ≤ t < τk,iq . Since x̂t = ϕt+

∑K
k=1 x̂

k
t ,

as stated in (13), in fact, the controller updates its estimates for
each entry of x̂t regardless of which of the nodes transmitting
the information bits. We define ˜̂xq = [˜̂x1q,

˜̂x2q, . . . ,
˜̂xnq ] ,∑K

k=1
˜̂xkq , where ˜̂xk,iq is the ith entry of ˜̂xkq . The controller

node, upon receiving the qth (in the global order) bit δiq from
node kq , it performs the following update

˜̂xiq = ˜̂xiq−1 + δiq∆,
˜̂xi0 = 0, (30)

and uses ˜̂xq as the estimate of
∑K
k=1 x̂

k
t until the next received

bit. If multiple bits arrive at the same time, then it processes
them in a random order. The proposed procedures at node
k and the controller are summarized in Algorithms 1 and 2,
respectively.

Algorithm 1 The proposed procedure at node k
1: Compute {Y t}t≥0 and {Ωt}t≥0 as in Fig. 3

2: Initialization: t← 0, y ← 0, γi ← 0, i = 1, . . . , n

3: while t ≥ 0 do
4: t← t+ 1

5: y ← Ωt−1y + φt

6: x̂← Y −1
t y

7: if |x̂i − γi∆| ≥ ∆, i = 1, . . . , n then
8: θi ←

⌊
|x̂i−γi∆|

∆

⌋
9: Transmit δi = sign(x̂i − γi∆) to the controller (θi times)

10: γi ← γi + δiθi

11: end if
12: end while

Algorithm 2 The proposed procedure at the controller
1: Compute {Y t}t≥0 and {Ωt}t≥0 as in Fig. 3

2: Compute {Y t|t−1}t≥1 as in (4)

3: Initialization: t← 0, ˜̂xiq ← 0, i = 1, . . . , n, λ−1 ← 0

4: while t ≥ 0 do
5: t← t+ 1

6: ξt−1 ← Y t|t−1But−1

7: λt−1 ← ξt−1 + Ωt−1λt−2

8: ϕt ← Y −1
t λt−1

9: if δiq arrives, i = 1, . . . , n then
10: ˜̂xiq ← ˜̂xiq−1 + δiq∆

11: end if
12: ˜̂xt ← ϕt + ˜̂xq

13: end while

Note that lines 7-11 in Algorithm 1, and 9-11 in Algorithm
2 are processed for each entry i in parallel. In Algorithm 1 and
Algorithm 2, the matrices Y t and Ωt are iteratively computed
offline following the flow chart in Fig. 3.

B. Performance Analysis

The optimum state estimate x̂t, is achievable only under
a centralized setup, in which the controller has access to all
observations systemwide. In a distributed system with resource
constraints, a decentralized state estimate ˜̂xt inevitably incurs
a nonzero performance gap. Given a specific decentralized
scheme, the lower and upper bounds on the difference x̂it− ˜̂xit
define the 100% confidence interval for each entry x̂it. We here
analyze both the non-asymptotic and asymptotic behaviors of
this maximum-level, i.e., deterministic confidence interval, as a
measure of performance/reliability for the proposed decentral-
ized scheme based on level-crossing sampling. Specifically, we
show that this interval is easily controllable through parameter
selection, and remains bounded for all x̂it, i.e., x̂it− ˜̂xit = O(1)1

even if |x̂it| → ∞, yielding a strong type of asymptotic
optimality called order-2.

1O(·) is the big-O notation and O(1) denotes a constant.
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Thisstrongtypeofasymptoticoptimalityprovidesahigher
performancestandardthantheconventionalorder-1asymp-
toticoptimality, whichnecessitatestheconvergenceof˜̂xi

t

tox̂i
t,i.e.,

˜̂xi
t

x̂i
t

=1+ o(1)2 as|̂xi
t| → ∞. Notethatin

order-1asymptoticoptimality,thedeterministicconfidence
interval maybecomeunboundedatalowerratethanx̂i

t,
thatis,̂xi

t−˜̂xi
t= o(̂xi

t)as|̂xi
t| → ∞. Order-2asymptotic

optimalityisusedasabenchmarkforhighperformancein
resource-constraineddistributedsystems,e.g.,[25],[27].Inthe
followingtheorem,weshowthattheproposeddecentralized
schemeachievesthishigh-performancebenchmark.

Theorem1. Inthedecentralizedstateestimationscheme
basedonlevel-crossingsampling,giveninAlgorithms1and2,
eachstateestimate˜̂xi

tisguaranteedtoliewithinK∆ bound
oftheoptimumstateestimatex̂i

t,i.e.,

|̂xi
t−˜̂xi

t|<K∆,∀i,t, (31)

whereK isthenumberofnodes,∆isthelevel-crossingsam-
plingthreshold,x̂i

tand˜̂xi
taretheithentriesofstateestimate

vectorsattimetintheoptimumschemeandtheproposed
scheme,respectively.Asaresult,itisorder-2asymptotically
optimum,i.e.,x̂i

t−˜̂xi
t=O(1)evenif|̂xi

t| → ∞.

Proof: Duetothesamplingrulein(25)thecurrent
signallevelx̂k,i

t ateachnodekis within∆ boundofthe
currentsamplinglevelγk,i

q ∆,thatwasmostrecentlycrossed.
Thecontrollerkeepstrackofthecurrentsamplinglevelγk,i

q ,

givenby(28),foreachlocalsignalx̂k,i
t asitisinformedof

eachsamplinglevelcrossingthroughδk,i
q ,givenby(27).It

estimatesx̂k,i
t with ˜̂xk,i

t = γk,i
q ∆,asshownin(29),hence

|̂xk,i
t −˜̂xk,i

t |<∆,∀k,i,t.Lettheithentryofthevectorϕt

bedenotedwithϕi
t.Dueto(13),̂xi

t=ϕi
t+

K
k=1 x̂k,i

t and
˜̂xi

t=ϕi
t+

K
k=1

˜̂xk,i
t .Hence,wehave

|̂xi
t−˜̂xi

t|<
K

k=1

|̂xk,i
t −˜̂xk,i

t |<K∆,∀i,t,

proving(31).Then,theasymptoticoptimalityresultfollows
forfixedK and∆.

Theorem1presentsastrongresult(i.e.,theconfidence
boundK∆)thatholdsforanyx̂i

t value(small/large,non-
asymptotic/asymptotic),constitutinganimportantadvantage

2o(·)isthelittle-onotationando(1)denotesadiminishingvalue.

overtheconventionalschemebasedonconventionaltime-
triggeredsampling.Inparticular,inthescheme whichuni-
formlysamplesandquantizesx̂k,i

t ,theconfidenceinterval
increases withrangeof̂xk,i

t ,thatis,thelargervalueŝxk,i
t

gets,thelargertheconfidenceintervalis.Furthermore,in
suchaschemewithasmallnumberofquantizationbits,the
confidenceintervalis,ingeneral,muchlargerthanK∆.

IV. NON-IDEALCOMMUNICATIONS

Existingworksassumethereexistsacommunicationsystem
(apairoftransmitterandreceiverforsomechannel model),
andanalyzetheeffectsofnoisycommunicationsindiscrete-
time.Similarly,westartourdiscussionwithadiscrete-time
channel model witherrorprobabilityp,e.g.,binaryerasure
channel(BEC)andbinarysymmetricchannel(BSC).Insucha
model,atransmittedbitδk,i

q isreceivedas̃δk,i
q atthecontroller,

whereδ̃k,i
q =δk,i

q withprobability1−pand̃δk,i
q =δk,i

q (i.e.,

δ̃k,i
q =0forBECand̃δk,i

q =−δk,i
q forBSC)withprobability

p. Whenabiterroroccurs(i.e.,abitislostorflipped),the
controllerperformsanerroneousupdateδ̃k,i

q ∆ with δ̃k,i
q =

δk,i
q .
Ifsucherrorshappeninfinitelyoften(i.o.),thediscrepancy

|̂xi
t−˜̂xi

t|maygrowunboundedlyifthesystemisunstable,
i.e.,|̂xi

t| → ∞.Ifthesystemtendstobeunstableintimefor
somereason,itcanbestoppedandrestartedtoletthesystem
statesreturntoinitialvalues,e.g.,[29].However,forastable
system,aslongasbiterrorhappensatthesameratepfor
bothδk,i

q =1 andδk,i
q = −1,thestabilityofthesystemis

preservedast→ ∞,asshownnext.

Theorem2. Inapracticalsystemwithresourceconstraints
andanonzerochannelerrorprobabilityp,thedeterministic
confidenceintervalηfortheproposedLCS-basedstatees-
timatẽ̂xi

t(i.e.,|̂xi
t−˜̂xi

t|<η)isunbounded,i.e.,η→ ∞,
as|̂xi

t| → ∞. RecallfromTheorem1thatforp = 0,
η= K∆,∀t. Hence,asopposedtoTheorem1,forp >0,
order-2asymptoticoptimalitydoesnothold.However,fora
stablesystemwhere|̂xi

t|<∞ ast→ ∞,ourestimateisalso
stable,i.e.,|̃̂xi

t|<∞,foranyp>0.

Proof:FromtheBorel-Cantellilemma,

P(biterroroccursi.o.)=0 if
∞

t=1

p<∞,

whichdoesnotholdunlessp→ 0atarateatleastasfast
as1/t,thatis,p= O(1/t).Inthechannelcodingtheorem,
p→ 0onlyiftheblocklengthgoestoinfinity,i.e.,thenumber
ofbitsθk,i

q → ∞. Obviously,thisisnotthecasehereas

thelocalsignal̂xk,i
t hasonlyfinitejumps. Moreover,dueto

theresourceconstraints,wecannottransmitalargenumber
ofbitspersample.Asaresult,P(biterroroccursi.o.)> 0.
If|̂xi

t| → ∞,that meanseitherthenumberof∆ or−∆
changes(i.e.,thenumberofδk,i

q =1 orδk,i
q =−1)goesto

infinityfasterthantheother.Inthiscaseoneofthebittypes
islostinfinitely moreoftenthantheother,and wecannot
deterministicallyboundtheerror|̂xi

t−˜̂xi
t|.

Forastablesystemwhere|̂xi
t|<∞∀t,i,thenumberof∆

and−∆changeswillgotoinfinityast→ ∞ atthesamerate
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such that the state estimate remains bounded. Hence, even if bit
error occurs infinitely often, errors for δk,iq = 1 and δk,iq = −1
will occur randomly at the same rate p, canceling each other,
so the error will not accumulate to infinity.

In theory, the order-1 asymptotic optimality is possible, as
shown next.

Theorem 3. If x̂it → ∞ at a rate faster than t, that is,
x̂it = ω(t), the proposed LCS-based scheme achieves order-1
asymptotic optimality, i.e.,

˜̂xi
t

x̂i
t

= 1 + o(1) as |x̂it| → ∞.

Proof: This is because
˜̂xi
t

x̂i
t

= 1+
˜̂xi
t−x̂

i
t

x̂i
t

, and from Theorem

2, ˜̂xit− x̂it may become unbounded as fast as t, i.e., ˜̂xit− x̂it =
O(t), since there may occur an error of 2∆

∑K
k=1 θ

k,i
q < ∞

at each time t. Hence,
˜̂xi
t

x̂i
t

= 1 + o(1) if x̂it = ω(t).
However, such an extreme case, where x̂it → ∞ at a rate

faster than t, is not of practical interest. In this section we con-
sider improving the non-asymptotic performance by designing
practical (continuous-time) communication systems. We first
consider the simplest case in which each node k reports each
ith entry x̂k,it of its local vector x̂kt to the controller through
a separate channel that is orthogonal to the other channels
in the network, resulting in Kn parallel channels in total. In
this model, we identify the optimum modulation techniques
under additive white Gaussian noise (AWGN) and fading
channels. Then, we propose more bandwidth-efficient models
via multiple-access channels.

A. Parallel Channels for Nodes

1) AWGN Channels: Suppose each node k sends the wave-
forms a s(t) and b s(t) for δk,iq = 1 and δk,iq = −1, respec-
tively, through an AWGN channel. The controller, applying a
matched filter and sampling uniformly, receives the following
discrete-time signal

rk,it = ck,it + nk,it , (32)

where ck,it is either a or b, and nk,it is the (zero-mean) white
Gaussian noise with variance σ2. Hence, rk,it ∼ N (ck,it , σ2),
that is, the mean is a, b, and 0 for δk,iq = 1, δk,iq = −1, and no
transmission, respectively, and the variance is the same in all
cases. To minimize the probability of demodulation error, we
should separate a, b, and 0 as much as we can. Thus, under
the peak transmission power constraint max(a2, b2) ≤ P 2, the
antipodal signaling a = −b = P is optimum, as shown in Fig.
4.

2) Fading Channels: Under a fading channel model, the
controller receives

rk,it = hk,it ck,it + nk,it , (33)

where the channel coefficients {hk,it },∀t, i, k are i.i.d. with
the distribution N (µ, ρ2) for Rician fading (µ 6= 0) and
Rayleigh fading (µ = 0). Let us first analyze the Rayleigh
fading case. The received signal rk,it is zero-mean Gaussian
with variance a2ρ2 + σ2, b2ρ2 + σ2, and σ2 for δk,iq = 1,
δk,iq = −1, and no transmission, respectively (see Fig. 5). This
time we should separate a2, b2, and 0 to minimize the error
probability. Hence, an asymmetric constellation is optimum
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t
)

δ
k,i
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No transmission
δ
k,i
q = −1

δ̃
k,i
q = −1 δ̃

k,i
q = 0 δ̃

k,i
q = 1

Fig. 4. Probability density function (pdf) of the signal rk,it , given in (32),
received by the controller through an AWGN channel when the optimum
antipodal signaling a = −b = 5 is used. In this example, the peak power
constraint is P 2 = 25 and the variance is σ2 = 1. For maximum likelihood
(ML) demodulation, the decision boundaries and the corresponding decisions
are shown with the vertical dotted lines and the boxed texts, respectively.
The controller indeed makes such a decision at each time t. To minimize the
modulation error, represented by the intersection of pdfs, signaling levels a
and b are set apart as much as the peak power constraint allows.

under Rayleigh fading, as shown in Fig. 5. Under the same
peak transmission power constraint, either a2 or b2 should be
P 2, say a2 = P 2. Then, the choice for b2 ∈ [0, P 2] is given
by the following theorem.
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No transmission
δ
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δ̃
k,i
q = −1

−r1(b) r1(b)r2(b)−r2(b)

δ̃
k,i
q = 0

δ̃
k,i
q = −1

δ̃
k,i
q = 1 δ̃

k,i
q = 1

Fig. 5. Probability density function (pdf) of the signal rk,it , given in (33),
received by the controller through a Rayleigh fading channel when the
optimum asymmetric signaling, a2 = 25 and b2 = 4, is used. In this example,
the peak power constraint is P 2 = 25; the variances are σ2 = ρ2 = 1; and
the transmission probabilities are P(δk,iq = 1) = P(δk,iq = −1) = 0.23 and
P(No transmission) = 0.54. For maximum likelihood (ML) demodulation,
the decision boundaries ±r1(b),±r2(b), and the corresponding decisions
are shown with the vertical dotted lines and the boxed texts, respectively.
The controller indeed makes such a decision at each time t. To minimize the
expected modulation error, represented by the intersection of pdfs in the wrong
decision regions, the signaling level b is determined based on the transmission
probabilities, as shown in (34).

Theorem 4. Consider Rayleigh fading channels between the
nodes and the controller [see (33)], a peak power constraint
P 2, and maximum likelihood (ML) demodulation. Then, the
optimum signaling levels, in terms of minimizing the MSE per
bit, for transmitting the LCS bits [see (27)] are given by aray =
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±P and

bray = arg min
b

P(δ = 1)

[
4Φ

(
r1(b)

α

)
− 3Φ

(
r2(b)

α

)]
− P(δ = 0)Φ

(
r2(b)

σ

)
+ P(δ = −1)

[
−4Φ

(
r1(b)

β(b)

)
+ Φ

(
r2(b)

β(b)

)]
, (34)

where a and b are interchangeable; Φ(·) is the cumulative
distribution function (cdf) of the standard Gaussian distribu-
tion; P(δ = 1), P(δ = −1), P(δ = 0) are a node’s prob-
abilities of transmitting +1, −1, and nothing, respectively;
α =

√
a2ρ2 + σ2 and β(b) =

√
b2ρ2 + σ2 are the standard

deviations of the signal received by the controller [see (33)]
when +1 and −1 are transmitted, respectively; and

r1(b) = αβ(b)

√
2 log(α/β(b))

α2 − β(b)2

r2(b) = β(b)σ

√
2 log(β(b)/σ)

β(b)2 − σ2

(35)

are the decision boundary values for the received signal for
ML demodulation (see Fig. 5).

Proof: From (30), the MSE per bit is given by

E[(δ∆− δ̃∆)2] =

(2∆)2P(δ̃ = −1, δ = 1) + ∆2P(δ̃ = 0, δ = 1)

+ ∆2P(δ̃ = −1, δ = 0) + ∆2P(δ̃ = 1, δ = 0)

+ ∆2P(δ̃ = 0, δ = −1) + (2∆)2P(δ̃ = 1, δ = −1) (36)

where δ ∈ {−1, 0, 1} is the transmitted bit, and δ̃ ∈ {−1, 0, 1}
is the received bit through the Rayleigh fading channel. Above
we don’t show the indices for node, dimension, and time since
we assume i.i.d. channels. As shown in Fig. 5, the MSE per
bit can be written as

E[(δ∆− δ̃∆)2] =

(2∆)2 P (r2(b) ≤ |r| ≤ r1(b) | δ = 1) P(δ = 1)

+ ∆2 P(−r2(b) ≤ r ≤ r2(b) | δ = 1) P(δ = 1)

+ ∆2 P(r2(b) ≤ |r| ≤ r1(b) | δ = 0) P(δ = 0)

+ ∆2 P(|r| ≥ r1(b) | δ = 0) P(δ = 0)

+ ∆2 P(−r2(b) ≤ r ≤ r2(b) | δ = −1) P(δ = −1)

+ (2∆)2 P(|r| ≥ r1(b) | δ = −1) P(δ = −1). (37)

After some manipulations, it is straightforward to show that

E[(δ∆− δ̃∆)2] =

2∆2

{
P(δ = 1)

[
4Φ

(
r1(b)

α

)
− 3Φ

(
r2(b)

α

)
− 1

2

]
+ P(δ = 0)

[
1− Φ

(
r2(b)

σ

)]
+ P(δ = −1)

[
7

2
− 4Φ

(
r1(b)

β(b)

)
+ Φ

(
r2(b)

β(b)

)]}
, (38)
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Fig. 6. The optimum signaling level b under Rayleigh fading channel vs.
the transmission probabilities for the MSE per bit criterion [left figure - see
(34)] and the MAE per bit criterion [right figure - see (39)]. P(δ = 1)
and P(δ = −1) denote the probability of transmitting at the level a and b,
respectively. The probability of no transmission is given by
1 − P(δ = 1) − P(δ = −1). In practice, the case in which P(δ = 1) =

P(δ = −1) is of special interest since x̂k,it is neither increasing or decreasing.
This case, represented by the red line, is shown specifically in the upper right
corner in both figures.

minimizing which over b is equivalent to minimizing (34). The
decision boundaries r1(b) and r2(b) are the intersection points
at which the zero-mean Gaussian pdf with variance β(b)2

coincides with the zero-mean Gaussian pdfs with variances
α2 and σ2, respectively. Equating the pdf expressions at the
same point, for instance for r1(b),

e−r1(b)
2/2α2

√
2πα

=
e−r1(b)

2/2β(b)2

√
2πβ(b)

,

we get the closed-form solutions given in (35).

Fig. 6 shows the optimum signaling level b for different
transmission probabilitites according to MSE per bit as in
Theorem 4, and also mean absolute error (MAE) per bit
E[|δ∆ − δ̃∆|]. For the MAE criterion, following the proof
of Theorem 4 we can show that the optimum signaling levels
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are given by aray = ±P and

bray = arg min
b

P(δ = 1)

[
2Φ

(
r1(b)

α

)
− Φ

(
r2(b)

α

)]
− P(δ = 0)Φ

(
r2(b)

σ

)
+ P(δ = −1)

[
−2Φ

(
r1(b)

β(b)

)
+ Φ

(
r2(b)

β(b)

)]
. (39)

In Fig. 6, it is seen that as the probability P(δ = 1) of
transmitting the level a increases from 0 to 1, the optimum
level for b, as expected, transitions from 5, which is the same
as a, to 0, which correpsonds to no transmission. In the MAE
case, the transition takes place later, and the transition region
is wider because the penalty for flipping a bit in this case is
milder (2 times the penalty for losing a bit) than that in the
MSE case (4 times the penalty for losing a bit).

Note that the transmission probabilities are determined by
the sampling threshold ∆, as well as the signal to be sampled
x̂k,it . In particular, larger ∆ causes smaller P(δ = 1) and
P(δ = −1), and thus larger no transmission probability. In
practice, by setting ∆ accordingly, we tend to attain moderate
transmission rates (e.g., 1 bit per dimension per unit time),
which correspond to the transition regions in Fig. 6, hence no
information loss due to the identical signaling levels.

It might make more sense to minimize the cumulative
MSE = E[‖x̂t− ˜̂xt‖22] instead of the MSE per bit. In this case,
the optimum b value that minimizes the cumulative MSE can
be numerically found through offline simulations.

Since Rician fading includes AWGN and Rayleigh fading
as extreme cases with ρ2 = 0 and µ2 = 0, respectively, the
optimum signaling scheme under Rician fading is a function
of µ2 and ρ2.

Recall from (26) that node k transmits θk,iq repetitions of the
sign bit δk,iq , where θk,iq denotes the number of level crossings.
Instead of transmitting θk,iq times, one may choose to encode
θk,iq in time or frequency or amplitude based on available
resources. Specifically, assuming θk,iq < M , for all q, i, k
and for some M > 0, which easily holds in practice, one
can uniformly partition the available time/frequency/amplitude
interval into M subintervals, and transmit δk,iq in the θk,iq th
subinterval. Such an encoding enjoys a single transmission,
hence higher resource efficiency, whereas multiple transmis-
sions (i.e., θk,iq repetitions of δk,iq ) provide robustness against
the demodulation errors. Note that encoding θk,iq in energy
levels (i.e., pulse-amplitude modulation) works well only
under AWGN channels, but not fading channels due to the
multiplicative noise. We next discuss using multiple-access
channels.

B. Multiple-Access Channels

Since a received bit at the controller, regardless of its
source node, causes the same update (∆ or −∆), nodes can
synchronously transmit in multiple-access channels in a more
bandwidth-efficient way than the previous setup with Kn
parallel channels.

Under fading channels with asymmetric signaling, same
polarity bits that correspond to the same state estimate, i.e.,

{δk,iq = j}k,q, i = 1, . . . , n, j = ±1, can be transmitted
in the same multiple-access channel, resulting in 2n parallel
channels. Then, the controller receives

rijt = cj

Kij
t∑

k=1

hk,ijt + nijt , (40)

where Kij
t is the number of nodes transmitting bits at time

t regarding the state estimate i with polarity j, and the
asymmetric transmission levels c+1 = a and c−1 = b.
The update information carried by rijt for x̂it is Kij

t j∆,
where Kij

t is unknown. Hence, the controller needs to esti-
mate Kij

t from rijt . Defining the effective channel coefficient
hijt ,

∑Kij
t

k=1 h
k,ij
t we have hijt ∼ N (Kij

t µ,K
ij
t ρ

2) and
thus rijt ∼ N (cjK

ij
t µ, c

2
jK

ij
t ρ

2 + σ2). As a result, using the
maximum likelihood (ML) criterion the controller can estimate
Kij
t as

K̃ij
t = arg min

Kij
t ∈{0,1,...,K}

(rijt − cjK
ij
t µ)2

c2jK
ij
t ρ

2 + σ2
+log(c2jK

ij
t ρ

2+σ2),

(41)
and update ˜̂xiq with K̃ij

t j∆ [cf. (30)].
The optimum total update for ˜̂xit at time t is (Ki,+1

t −
Ki,−1
t )∆ and estimated at the controller as (K̃i,+1

t −K̃i,−1
t )∆.

Note that in symmetric signaling (i.e., b = −a), we can
transmit all bits regarding the same input, that is, {δk,iq }k,q , in
a single multiple-access channel without losing the necessary
and sufficient information Ki

t , Ki,+1
t − Ki,−1

t . In other
words, we can combine different polarity channels regarding
the same input, resulting in n parallel channels, decreasing
the number of required parallel channels from 2n (in the
asymmetric case) to n. Specifically, the signal received by the
controller at time t for x̂it is given by

rit = a

Ki,+1
t∑
k=1

hk,i,+1
t −

Ki,−1
t∑
k=1

hk,i,−1t

+ nijt . (42)

Defining the effective channel coefficient hit ,∑Ki,+1
t

k=1 hk,i,+1
t −

∑Ki,−1
t

k=1 hk,i,−1t we see that
hit ∼ N (Ki

tµ,K
i
tρ

2) and thus rit ∼ N (aKi
tµ, a

2Ki
tρ

2 + σ2).
Similar to (41), the controller finds the ML estimator as

K̃i
t = arg min

Ki
t∈{−K,...,K}

(rit − aKi
tµ)2

a2Ki
tρ

2 + σ2
+ log(a2Ki

tρ
2 + σ2),

(43)
and updates ˜̂xiq with K̃i

t∆. Note that in (43), Ki
t ∈

{−K, . . . ,K}, whereas in (41) Kij
t ∈ {0, 1, . . . ,K}.

Similarly, under AWGN channels with symmetric signaling,
we can transmit all the bits regarding the same input in a single
multiple-access channel. In this simpler case, the controller
receives

rit = aKi
t + nit, (44)

which is clearly distributed according to N (aKi
t , σ

2). Hence,
the ML estimator is given by

K̃i
t = arg min

Ki
t∈{−K,...,K}

(rit − aKi
t)

2

= arg min
Ki

t∈{−K,...,K}

∣∣∣∣Ki
t −

rit
a

∣∣∣∣ . (45)
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That is, K̃i
t is the closest Ki

t ∈ {−K, . . . ,K} to rit
a , which

we can write as

K̃i
t = min

(
max

(
round

(
rit
a

)
,−K

)
,K

)
. (46)

It is clearly seen that synchronous communication over
multiple-access channels provides significant bandwidth sav-
ings (n or 2n vs. Kn parallel channels). The number of level
crossings θk,iq can be reported to the controller by again either
multiple transmissions or encoding in time/frequency/energy,
as discussed in Section IV-A.

V. DISTRIBUTED LQG CONTROL FOR
RESOURCE-CONSTRAINED SYSTEMS

As a practical application of the proposed distributed state
estimation method in networked control systems, we consider
the finite-horizon linear quadratic Gaussian (LQG) control
problem in which the following quadratic cost function JN
is minimized,

JN , E

[
xTNQ0xN +

N−1∑
t=0

(
xTt Q1xt + uTt Q2ut

)]
, (47)

where Q0, Q1, and Q2 are symmetric and positive semidef-
inite matrices of appropriate dimensions. Our objective is to
find the optimal control strategy {ut} that minimizes the cost
function JN above.

Due to the separation principle [30, page 157] in the optimal
LQG control (cf. Remark 1 at the end of this section), we first
obtain the optimum state estimate x̂t, and then the optimum
control vector

ut = −Ltx̂t, (48)

where Lt is the optimum feedback gain matrix

Lt = (BTSt+1B +Q2)−1BTSt+1A, (49)

and St is given by the recursive equation

St = ATSt+1A−ATSt+1BLt +Q1 (50)

for t = N − 1, . . . , 1 with the initial value SN = Q0. Note
that given the system matrices A,B, and the cost matrices
Q0,Q1,Q2, using (49) and (50) the optimum feedback gain
Lt can be computed offline. Hence, in the optimal LQG
control only the state estimate x̂t is computed online.

Lemma 2. The systemwide optimum control input ut can be
written as the sum of local contributions as follows

ut =

K∑
k=1

ukt ,

where ukt is the local contribution from node k, given by

ukt = −Lt

(
Y −1t

t−1∑
s=1

Ψt−1
s Y sA

−1Buks + x̂kt

)
. (51)

Proof: Using (13), (23) and (48), we can write

ut = −Lt

(
ϕt +

K∑
k=1

x̂kt

)

= −Lt

(
Y −1t λt−1 +

K∑
k=1

x̂kt

)
. (52)

The update rules for λt and ζt, given by (18) and (19),
respectively, share the same structure. Thus, similar to (20),
we can show that

λt =
t∑

s=1

Ψt
s+1ξs (53)

where from (10), (4), (8) and the definition of Ωt in (15), we
have

ξt = ΩtY tA
−1But. (54)

Combining (52), (53) and (54) we get

ut = −Lt

(
Y −1t

t−1∑
s=1

Ψt−1
s Y sA

−1Bus +

K∑
k=1

x̂kt

)
, (55)

Note that u1 =
∑K
k=1−Ltx̂

k
1 , and as a result, for all t, ut is

a function of
{∑K

k=1 x̂
k
t

}
t≥1

and globally known matrices.

Hence, (55) can be rewritten as

ut =
K∑
k=1

−Lt

(
Y −1t

t−1∑
s=1

Ψt−1
s Y sA

−1Buks + x̂kt

)

=
K∑
k=1

ukt .

Note that each node can compute the matrix Lt using (49)
and (50), as well as Y t,Ψ

t
s,A,B. Hence, we propose that

each node k computes ukt as in (51), and reports it to the
controller node using level-crossing sampling, as described in
Section III-A for x̂kt . In particular, each node k runs p parallel
level-crossing samplers for {uk,it }

p
i=1, where uk,it is the ith

entry of ukt . Let ũk,iq denote the approximation of uk,it at the
controller node during the time interval τk,iq ≤ t < τk,iq+1. Then,
the controller computes the input vector ũt = [ũ1t , . . . , ũ

p
t ]
T ,

where ũit =
∑K
k=1 ũ

k,i
q , and applies it to the system.

Corollary 1. For each input uit, under ideal communications,
the performance gap between the proposed decentralized
scheme and optimum centralized scheme is deterministically
bounded, i.e.,

|uit − ũit| < K∆, ∀i, t, (56)

and yields order-2 asymptotic optimality, i.e., uit− ũit = O(1)
even if |uit| → ∞.

Proof of (56) is similar to the proof of Theorem 1. Moreover,
since in a large system, in general, p� n, this marks another
advantage of reporting ukt instead of φkt (or ykt or x̂kt ) in the
distributed LQG control.

Following a similar discussion to Theorem 2, it can be
shown that as |uit| → ∞ the confidence interval |uit − ũit| is
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unbounded under non-ideal communication channels, hence
order-2 asymptotic optimality is not satisfied. However, for a
practical scenario where |uit| < ∞ as t → ∞, we also have
|ũit| < ∞ for any p > 0. Similar to the arguments given
in Theorem 3, order-1 asymptotic optimality is possible, i.e.,
ũi
t

ui
t

= 1 + o(1) as |uit| → ∞, if uit → ∞ at a rate faster
than t, that is, uit = ω(t). Since this condition is practically
infeasible, the modulation techniques presented in Section IV
can be used to improve the non-asymptotic performance.

Remark 1: Our discussion and results in this section are
based on the separation principle and system stability, which
are not guaranteed to hold in general, especially under noisy
communication channels. In particular, they require some
special conditions, e.g., a minimum level of data rate and
a maximum level of communication delay, as discussed in
Introduction in more detail. Hence, the performance shown in
Corollary 1 is valid only if such conditions are satisfied.

Remark 2: Together with Theorem 2, the results presented
in Corollary 1 and the following discussions show that the
proposed entire solution (i.e., decentralized state estimator
and LQG control scheme) is bounded-input bounded-output
(BIBO) stable even under noisy channels as long as the
optimum centralized solution is BIBO stable.

VI. NUMERICAL RESULTS

In this section, we illustrate the advantages of the proposed
schemes based on level-crossing sampling (LCS) through
numerical results considering a practical electrical power grid.
In particular, we examine the performance of the distributed
LQG control scheme presented in Section V since it is a
practical application that includes both state estimation and
control. Throughout this section we use the IEEE 57-bus
data in MATPOWER [31] with n = 57 state variables,
m = 80 measurements, p = 7 control inputs, and Q0, Q1,
Q2, R1, R2,k equal to the identity matrices of appropriate
sizes. In Fig. 7, in a system consisting of four nodes (i.e.,
K = 4), in terms of mean squared error (MSE), given
by E[‖ut − ũt‖22] =

∑p
i=1 E[(uit − ũit)

2], we compare the
proposed scheme with the conventional schemes that report
zkt , φkt , ukt via uniform sampling (US) and quantization. In
the literature, it is conventional that each node k transmits the
raw measurement zkt or the information vector φkt , and the
control center computes the Kalman filter or the information
filter, respectively. In that sense, a scheme that transmits the
local control vector ukt based on (51) is not conventional. It
is conventional in terms of transmission method if it uses
uniform sampling and quantization. For fair comparison, in
the proposed scheme, on average a single bit is transmitted
per dimension per unit time, and in the other schemes based
on uniform sampling at each time a single quantization bit is
transmitted per dimension.

A. MSE vs. Time

As shown in the top figure in Fig. 7, the “fully” conventional
scheme that transmits φkt via uniform sampling suffers a huge
performance gap due to the insufficient one-bit representations
of the wide range of φkt values (see Fig. 8). We see in Fig.
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Fig. 7. Mean squared error vs. time for the proposed scheme based on level-
crossing sampling (LCS) and the conventional schemes that transmit zkt , φkt ,
ukt via uniform sampling (US) and quantization.

7 that the scheme that transmits zkt using uniform sampling,
on the contrary, attains an acceptable performance. Since the
range of zkt values is much smaller than that of φkt (see Fig.
8), the approximate φ̃

k

t that is obtained from the recovered
z̃kt yields a better result than the quantized and recovered
φ̃
k

t . Note that the number of dimensions in φkt and zkt are
n = 57 and m = 80, respectively. In other words, in the
schemes US-φ and US-z, at each time 57 and 80 bits are
transmitted systemwide, respectively, whereas only p = 7
bits are transmitted at each time in the scheme US-u and
the proposed scheme LCS-u (on average). We allow this
unfairness in Fig. 7 because LCS-u still perform better than
US-φ and US-z.

Among the schemes that transmit the local control vector
ukt , which is the final information entity in the system, we
observe in the bottom figure in Fig. 7 that the proposed
scheme based on level-crossing sampling outperforms the
“half” conventional scheme based on uniform sampling. It is
“half” conventional because it unconventionally transmits ukt ,
as we propose in (52). Quantization threshold of each uk,it is
set to zero, and the two quantization levels are set as the means
of the positive (uk,it > 0) and negative (uk,it < 0) values,
that are estimated offline. The fluctuations in the conventional
schemes are due to the coarse (one-bit) quantization. It is seen
in the bottom figure in Fig. 7 that the performance improves
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by the transmission of a more finalized information entity, as
anticipated in Section V.

B. MSE vs. Number of Nodes

We next discuss the effect of node diversity on the cumula-
tive MSE performance

∑100
t=1 E[‖ut − ũt‖22] for the proposed

scheme and its counterparts based on uniform sampling. As
shown in Fig. 9, the performance of the conventional scheme
that transmits zkt via uniform sampling is not affected by the
increasing number of nodes since the number of transmitted
measurements is constant (m = 80 in this case) regardless of
the number of nodes. For the controller, it does not matter
who sends the measurements as long as the measurements are
the same regardless of the number and identity of the senders.
Hence, in this case, the number of bits transmitted systemwide
per unit time, which is 80, does not change with the number
of nodes. Considering this case as a resource (communication
and energy) constraint on the system we use the name “US-z

system” to differentiate between the resource usages of the
control schemes.

In the scheme that transmits ukt using uniform sampling,
more resources are used as the number of nodes increases.
Specifically, each node k transmits 1 bit per dimension i of
{uk,it : i = 1, . . . , p} per unit time, resulting in Kp bits per
unit time systemwide. Since this corresponds to a resource
constraint on the nodes, we use the name “US-u node” to
express its resource usage. Despite the increase in resource
consumption, its MSE performance stays nearly constant with
the increasing node diversity, as shown in Fig. 9. At first
glance this may look counterintuitive as K represents the
number of information sources. However, in this case, larger K
does not mean more information, but means more distributed
(or decentralized) information. Specifically, larger K means
more local signals ukt to report to the controller, hence more
quantization losses unless the range of ukt shrinks as fast
as 1/K. Apparently, for smaller K values, the range of ukt
shrinks slower than 1/K.

We next compare the proposed scheme that transmits ukt
using level-crossing sampling with the conventional schemes
“US-z system” and “US-u node” under the same system
and node resource constraints, respectively. Under the system
constraints, in which 80 bits are transmitted systemwide per
unit time, the performance of “LCS-u system” deteriorates
as the number of nodes increases due to the decentralization
of the systemwide optimum control vector ut. However, as
seen in Fig. 9, it still significantly outperforms “US-z system”
even in the most decentralized case with 80 nodes (i.e., one
measurement per node). Under the resource constraints on
each node, in which each node on average transmits 1 bit
per dimension per unit time, the performance of the proposed
scheme “LCS-u node” improves with the increasing node
diversity, as opposed its counterpart “US-u node” (see Fig. 9).
This is because as K increases each local control input uk,it
gets smaller values, and as a result we decrease the sampling
threshold ∆ to ensure 1 bit is transmitted on average for each
uk,it per unit time. Note that the performances of “LCS-u
system” and “LCS-u node” coincide at around K = 11 as
expected since the resource consumption becomes the same
(i.e., 80 bits systemwide per unit time) for both.

C. Discussions

According to (56), under ideal communication channels, it
is certain (not probabilistic) that the optimum control input
uit lies in the confidence interval (ũit − K∆, ũit + K∆),
which shrinks with small ∆. Accordingly, in selecting the ∆
value, there is a trade-off between performance and resource-
efficiency. Specifically, small ∆ improves the performance, as
stated in (56), but at the same time results in more frequent
transmissions [see e.g., (25) and (26) in the case of state
estimation], consuming more energy and bandwidth. Hence,
∆ should be selected to strike a desired balance between the
performance and resource efficiency.

Considering the LQG cost, given in (47), as the performance
measure for the control system, the expected tradeoff between
the control performance and the resource efficiency, based on
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Control performance of the proposed scheme is represented by the additional
cost JLCS100 − Jopt100 incurred due to decentralization at time 100 [see (47)].
Resource usage is denoted by the average number of bits transmitted by each
node per dimension per unit time.

the selection of the sampling threshold ∆, is illustrated in
Fig. 10. In the figure, the average number of transmitted bits
is given per unit time per node per dimension. For different
∆ levels, J100, given by (47), is calculated for the proposed
decentralized scheme, and denoted by JLCS100 . The additional
cost in JLCS100 with respect to the optimum centralized scheme,
denoted by Jopt100, in which all information is fully available to
the controller (i.e., ∆→ 0), is shown by JLCS100 − J

opt
100 in the

figure.

Performance • minimizes the processing of lossy information
at the controller (see (56) and Fig. 7)

Resource-
efficiency

(Energy &
Bandwidth)

• smaller number of parallel samplers, and thus
transmissions per node (e.g., p = 7 � n = 57
and m = 80 in IEEE 57-bus)

• smoother signal with smaller jumps, hence
smaller number of transmissions per sample
(see Fig. 8 and (26))

TABLE I
ADVANTAGES OF REPORTING ukt INSTEAD OF zkt , φkt , x̂kt , GIVEN BY (1),

(12), (22), RESPECTIVELY.

In addition to ∆, the smoothness of uk,it determines the
transmission frequency. In particular, big jumps in uk,it may
lead to frequent sampling and/or large number of transmissions
per sample, hence more resource consumption. Fortunately,
uk,it , being a control input applied to the system, is much
smoother than the observation zk,it , the information entity φk,it ,
and the state estimate x̂k,it , as shown in Fig. 8. The advantages
of reporting ukt in the distributed LQG control instead of some
earlier products in local processing, such as zkt , φkt , and x̂kt ,
are summarized in Table I.

Finally, the effect of nonzero error probability, p, in terms
of the additional LQG cost J̃LCS100 − JLCS100 , where JLCS100 and
J̃LCS100 are the costs at time 100 [see (47)] for the proposed
decentralized scheme under reliable and unreliable channels,
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Fig. 11. Additional LQG cost vs. probability of error for BEC and BSC. The
sampling threshold ∆ is taken as 0.01.

respectively, is illustrated in Fig. 11. As expected, as the error
probability p increases, the additional cost increases as well,
i.e., the control performance degrades. Moreover, under BSC,
the control performance degrades more compared to the BEC
case since an incorrect update on the information entities is
more destructive on the system performance compared to the
no-update case (i.e., ±2∆ error vs. ±∆ error).

VII. CONCLUSIONS

In this paper, the distributed dynamic state estimation and
LQG control problems have been analyzed for a networked
control system using an event-triggered sampling scheme
called level-crossing sampling. The advantages of processing
the information locally and sampling it with level-crossing
sampling have been shown through theoretical analysis and
simulations. Particularly, it has been shown that the informa-
tion loss in the proposed decentralized schemes has a deter-
ministic upper bound, and thus yields an order-2 asymptotic
optimality under reliable communication channels. Further-
more, in transmitting information from sensors to the con-
troller, noisy channels have been considered and corresponding
optimal modulation techniques have been proposed to improve
non-asymptotic performance of the proposed schemes.
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